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I. Introduction 

The solution for the electromagnetic fields in a cavity - beam pipe 

combination driven by a periodic current source is complex, even for the 

simplest geometries. Keil and Zotter' have obtained the result for the 

longitudinal coupling impedance for a beam pipe of circul'ar cross section 

and large circumference connected to a cylindrical cavity. They match field 

solutions within the beam, between the beam and the beam pipe walls, and in 

tie cavity outside the beam pipe radius, and obtain the result for the 

coupling impedance as a slowly convergent infinite series. 

In this paper we explore the possibility of matching field solutions 

in two different axial regions: The beam pipe (of circular cross section) and 

a cavity of general (azimuthally symmetric) shape, in the hopes that the 

result can be expressed as a sum over just a few cavity modes. In this way 

it may be possible to evaluate the coupling impedance of an obstacle of 

general shape by using existing numerical programs such as SUPERFISH'. 

* 
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'E. Keil and B. Zotter, Particle Accelerators 3, 11 (1972); see also Warnock, 
Bart and Fenster, Particle Accelerators 12, 179 (1982). 
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II. Analysis of the Fields 

We consider a beam pipe of cross sectional radius b and circumferential 

length 2nR in which an azimuthally symmetric cavity-like obstacle with dimen- 

sions small compared to R is located, as shown in Figure 1. 
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The longitudinal coupling impedance is defined as 3 

“0 z,(w) = - -j- 
0 

where the driving current is 

(2.1) 

(Io/m2) e iwz/v - iwt 

I 
, r<a 

Jzb-,z,t) = 
\ 0 r>a 

and the resulting "voltage" is defined by 

(2.2) 

3See, for example, A.W. Chao, 1982 Summer School Lectures, SLAC, p. 396. 
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-iwt - 2-rrR 
V,e =i 

0 
dz Ez(z) e-iwz'v (2.3) 

Here EZ(z) is the z component of the electric field generated by the 

driving current, averaged over the beam. 

The solution for the fields for a lossless beam pipe without an 

obstacle is well knownqand readily obtained. Specifically, suppressing 

the factor e -i& , 

IO 1 
l- 

E;=-- 
71a2 iwe 

I- 
aaFl(aa)Io(or) 

\ 

I 
f 

aaFo(ar)Il (aa) 
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where 
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Fob) = Kob) - -I IO(x) 
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F,(x) = K,(x) + 
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lo(ab) 1l(x) = - 

w (J= - 
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w n -= - 
v R 
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,iwz/v 

(2.5) 

(2.6) 

(2.7) 

F,’ (x) (2.8) 

(2.9) 

(2.10) 

4 See, for example, Nielsen, Sessler and Symon, Proc. of the Int’l. Conf. 
on High Energy Accelerators, Geneva, 1959, p. 239. 
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and where the upper and lower entries in i 1 correspond to r<a and r>a. 

It is also convenient to expand Eqs. (2.4) - (2.6) in the complete 

set of radial functions Jo(p, r/b)where p, is the R th zero of Jo(x). The 

result is 

E; = - ~ ,iWv F IO 1 pd- 
,,2 1WE R=l 

all Jo(~) 

EP IO 1 
r =21WE CJV (L) i eiwz" gFl 2 aaJl(y) 

= 

HP 
I 

9= 
01 PRr -- 

ra2' e 

iwz/v y pX 

L=l ab a!L Jl(+ 

(2.11) 

(2.12) 

(2.13) 

where 

J&y) u2 a2 
a1 = 

u2b2 
(2.14) 

ha r J;(P,) 
+ P$ 

We shall now write the fields in the actual configuration of Figure 1 

as 

(2.15) 

where the superscripts P and C stand for beam pipe and cavity respectively. 

"P AP Since E , H also correspond to our particular solution, including the 

driving current, 72 2 E and H will satisfy the usual Maxwell equations without 
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current and charge, namely 

V x i? = iwp $, V x ti = -iWE Ffc (2.16) 

We now separate our problem into two regions, in which the following 

boundary conditions apply: 

Region(l) Since fP and ip satisfy the boundary conditions on the 

beam pipe wall, 3 AC so must E and H . Thus 

F tan. = '3 iF 
norm. =0 [Region (1) boundary] (2.17) 

Region(2)The boundary of Region(2)can extend beyond r=b, and in 

AP -P general E and H will not satisfy the correct boundary condition on the 

cavity walls. Thus we must require 

F tan. = qan , 
. qorm = -f . norm. 

[Region (2) boundary] (2.18) 

If we are in a frequency region where only one mode can propagate 

in the beam pipe (pl/b<w/c<p2/b) and if we choose L to be at least several 

beam pipe diameters, then the cavity fields will coincide with the propa- 

gating mode field at z = L, 2nR-L. 

We shall evaluate the impedance in Eq. (2.1) separately for even 

and odd driving currents. Considering the symmetric modes, with a symmetric 

cavity first, we can replace the z dependent factors in Eqs. (2.4) - (2.6), 

(2.11) - (2.12) as follows: 

e iwz/v -b cos ; (JTR - d 
1 

i eiwz/v -f sin t (ITR - Z) 
J 

(2.19) 

We can now write for E and H in Region (1) 
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EC = 
Z 

&- cos c+R-Z) Jo(plr/b) 

E; = & "1 0 sin al(~R-z) Jl(p,r/b) 

HP 
4 

=A; cos cc,(~R-z) J,(p,r/b) 

where 

% 2 = (u/c)~ - (p,/b)2 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

and where A is to be determined. If we choose L to satisfy 

a1 (nR - L) = rnr (2.24) 

‘c ? then E and H in (2.20) - (2.22) will satisfy the usual metal wall 
a 

boundary condition- (Ttan = Hnorm = 0) on the interface between Regions (1) 

and (2) at z = L, 2nR - L. In this way the complete cavity problem 

(Region (2)) is specified by (a) the equations for<C andqC (Eq. (2.16)), 

(b) the boundary condition, Eq. (2.18), which holds on the outer cavity 

boundary, and by (c) the boundary condition, Eq. (2.17), which holds at 

Z = + L (or at z = 0, z = L for a "half cavity"). These represent the 

standard ingredients for a SUPERFISH calculation without the frequency 

search/fictitious driving current feature usually needed for finding the 

cavity eigenmodes. 

The output of the SUPERFISH calculation will be the fields E and H 

in Region (2). Because only one mode can propagate in the pipe region, the 

coefficient A will be determined by matching the cavity fields Ei and Hi to 

the values A/itie and A/U respectively as given in Eqs. (2.20) - (2.22) at 

Z = L. 

The formulation for the odd driving current is quite similar. In 

this case Eq. (2.19) is replaced by 
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eiwz/v -t -i sin F (nR - z) 
\ 

ie iwz/v I + i cos f (nR - z) 

We then obtain for E and H in Region (1) 

Ek = $ sin al(nR - 4 Johy/b) 

EC = B “1 
r WE 0 ~0s al bR - 2) J$y/b) 

HC 
4 

= B $ sin al(~R - z) Jl(plr/b) 
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(2.25) 

(2.26) 

(2.27) 

(2.28) 

If we again choose L to obey Eq. (2.24), then E: and Hi will now vanish at 

Z = L, ~ITR-L, thus satisfying a' "magnetic" wall boundary condition (?r,,,, = 

<an = 0) on the interface between Regions (1) and (2). Our cavity problem 

(Region (2)) then is specified by (a) the equations for yc andqC (Eq. (2.16)), 

(b) the boundary condition, Eq. (2.18), which holds on the outer cavity 

boundary, and by (c) the "magnetic" boundary condition 

!5 = 0, norm. q,, = 0 . (2.29) 

at z = 0 (because the mode is odd in z) and at z = L. Once again, these are 

the standard ingredients for a SUPERFISH calculation without the frequency 

search. The coefficient B in Eqs. (2.26) - (2.28) will be determined by 

matching the cavity field EF to the value BrxI/wea in Eq. (2.27) at z = L. 

III. Longitudinal Coupling Impedance 

Once the SUPERFISH calculations are completed, the longitudinal 

coupling impedance can be readily calculated. That portion due to the 
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beam pipe fields is obtained from Eqs. (2.1) - (2.4) by averaging over the 

beam, and is 

zL 
P * 

= 13 Ia rdr { 1 
0 

- oaF, (aa)Io(ar) ) = 

= 2iR 
coca2 ” ’ 

- 2=aF,(aa)I,(ca) } (3.1) 

For ob<<l one can use the series expansions for Kn(x) and I,(x) for small 

argument to obtain 

(3.2) 

where Z, =a = 377 ohms is the impedance of free space, in agreement with the 

well known result for a beam pipe4. 

The contribution of the cavity is obtained by calculating the voltage 

due to the additional cavity terms: 

VC 
L EC 

0 
= 2i Jo dz <f >even cos(wz/v) - 2i JL dz <Ei>odd sin(wziv) + 

0 

+ 2A 
ITR 

lz <Jo(plr/b)> / dz cos al(~R-z) cos(wz/v) + 
L 

+ 2B 
TrR 

G < J,(qr/b) > 1 dz sin a,(nR-z) sin(wz/v) (3.3) 
L 

where < > stands for the average over the beam. Our solution for EF in 

Eq. (2.4) makes it clear that EF is imaginary for the current perturbation 

even in z, and real for the current perturbation odd in z. The same is 

therefore true for Ei, and leads to the conclusion that A and B are real, 
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implying an overall imaginary result for Vk and ZL. 

The last two terms in Eq. (3.3) are readily evaluated, since 

and 

pla 
Jl( b ) 

< Jo(plr/b) > = 
pla 

(3.4) 

(2b) 

ITR 
IL dz cos r+R-z) cos(wz/v) = - 

f sin(wL/v) 
2 cos(m7r) 

bJM2 - a, 
(3.5) 

JrRdz sin CX~(ITR-z) sin(wz/v) = 
01~ sin(wL/v) 

L 
3 3 cos(mT) (3.6) 

(w/V)' - a; 

where we have used Eqs. (2 

dependence on R. Thus the 

add an imaginary contribut i 

10) and (2.24) to eliminate all remaining 

effect of the cavity with lossless walls is to 

on Zc = L -$I0 to Zl in Eq. (3.1) or (3.2) which 
r 

does not depend on R. (The cavity contribution Z;/n will therefore be 

proportional to l/R.) 

IV. Two Propagating Pipe Modes 

The formulation in Sect 

SUPERFISH problem for the cavity 

ions II and III will lead to a well defined 

when only a single mode can propagate in the 

beam pipe. It can also readily be adapted to a frequency below the cut-off 

3 3 frequency of the beam pipe by setting E and H to zero in Region (1). 

However, when two or more modes can propagate in the pipe, the situation is 

much more complicated. 

The following method can be used when two modes can propagate. In 

this case Eqs. (2.20) and (2.22) are replaced by 
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( ri ) = ( ‘i~~~-‘}~A,JisiiPlr/b)cos a,(nR-z)+A2Jffj(p2r/b)cos a2(nR-z)] 

(4 
u 

(4.1) 
It is now not possible to find a value, z = L, for which either aHi/az = 0 

(metallic boundary) or Hi = 0 ("magnetic" boundary). But if we choose L 

such that 

aH; 1 
Hc an zxL = - altAn rl(nR-L) = 
e 

- aptan a2(rR-L) g -A (4.2) 

for each of the two terms in Eq. (4.1), and therefore for any linear 

combination of the two terms, then we can redefine the boundary conditions 

(4.3) 

Thus we have a linear combination of the Oirichlet and Neumann boundary 

condition at z = L, and this is sufficient to define the SUPERFISH problem 

for the cavity. Clearly L and x must first be obtained by solving Eq. (4.2) 

numerically before performing the SUPERFISH calculation with the boundary 

condition in Eq. (4.3). 

Once the SUPERFISH solution is obtained, A1 and A2 can be found by 

matching the r dependence at z = L. One then performs an analogous cal- 

culation for the field solution odd in z and eventually obtains two additional 

terms in Eq. (3.3) involving A2 and B2. The coupling impedance due to the 

cavity, ZF = -v;/1,, is obtained as before. 

V. Summary 

The calculation of the longitudinal coupling impedance for a cavity 

of general (azimuthally symmetric shape) attached to a long beam.pipe of 

circular cross section has been formulated as a boundary value problem in two 

separate longitudinal regions. Specifically, we write the well known solution 
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for the fields of a sinusoidally varying driving current in a uniform beam 

pipe and express the actual field as the sum of the known beam pipe field 

and a supplementary field caused by the cavity. The equations for this 

supplementary field are then written in two regions, one involving just the 

beam pipe, and the other involving the cavity and just enough of the beam 

pipe for the evanescent modes to decay. By careful selection of the location 

of the interface between the two regions, the equations for the supplementary 

field in the cavity region become Maxwell's equations without current or charge 

sources, and with well specified (inhomogeneous) boundary conditions on the 

walls of the cavity. As a result, numerical programs such as SUPERFISH can 

be directly used to obtain the supplementary field and the corresponding 

contribution of the cavity to the coupling impedance. 
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